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A ADDITIONAL IMPLEMENTATION DETAILS

A.1 INTERPRETABILITY: LOCATING MOST ACTIVATED PATCHES

Given an input image x0 and a chosen prototype J , the most activated patch is determined as follows:

1. Compute the similarity score between each latent feature zi, where i ∈ {1, 2, . . . , N}, and
the prototype pJ . Identify the closest zi as:

i′ = argmin
i

D(zi, pJ)

where D(·, ·) represents the chosen distance metric; in our case, it’s the log transformed
square L2 distance (Sec. 3.1).

2. Map the index i′ back to the spatial coordinates of the feature map. Using the receptive field
of the encoder, locate the corresponding patch in the original image, as shown in Fig. 5.

A.2 INTERPRETABILITY: EMERGENCE ANALYSIS

Retrieve prototype activation vector along generation process for one image. For a given guid-
ance s and starting noise xT , we can sample a generated image x0, where xt denotes the intermediate
state at each timestep. At each timestep t, the estimated denoised image x̂t

0 is computed as:

x̂t
0 =

1√
ᾱt

(xt −
√
1− ᾱt · ϵθ(xt, t, s)). (8)

Here, the superscript t indicates that this estimate originates from timestep t. The prototype activa-
tion vector at timestep t is then obtained as: st = Enc(x̂0,t). By repeating this process across all
timesteps t, we obtain the sequence {st}Tt=0. Extracting the j-th index rom each activation vector
yields {stj}Tt=0, which tracks how the j-th prototype is activated throughout the generation process
for sample x0.

Examples of how prototypes emerge differently over time during diffusion. Building on the
illustrative example in Fig.1a, where specific semantic features are enhanced or suppressed using
prototype activation vectors, we examine how the five selected prototypes emerge over time during
the generation process. This is shown for the original image (Fig.6a), with the enhancement of the
prototype “White collar” (Fig.6b), and with the enhancement of the prototype “Curly hair” (Fig.6c).
Interestingly, when the “White collar” prototype is enhanced, its similarity score increases notably
around timestep 700/1000 (Fig.6b). In contrast, when enhancing the “Curly hair” prototype, its
similarity score begins to rise around timestep 200/1000 (Fig.6c). Note that larger t corresponds
to an earlier stage of the diffusion process, which means “Curly hair” as a semantic information
emerged later in diffusion generation process, compared to “White collar”.

This observation is further confirmed by the estimated denoised x̂t
0 in Fig.6b and Fig.6c. White

clothing appears at an early stage of the denoised images, whereas although the hair becomes fluffier,
the fine-grained curly texture only emerges around timestep 200 (bottom of Fig.6c). This difference
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Figure 5: Illustration on how to find the most activated patch given x0 regarding prototype
J . Here the shape of x0 (64 × 64 × 3) serves as an example and should be generalizable to other
scenarios.
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(a) Original sample (b) Add “white collar”

(c) Add “curly hair” (d) Difference in prototype 
activations over time

Figure 6: Prototype emergence details in: (a) the original generated sample; (b) generated
sample with ”white collar” added; (c) generated sample with ”curly hair” added; (d) differences
in prototype activations over time. Sharp increases indicate the timesteps when prototypes begin
to emerge prominently in the enhanced sample compared to the original.

is summarized in Fig.6d, where we show the difference in prototype activation vectors between the
enhanced and original samples. The sharp increases in the plotted curves indicate the timesteps at
which the respective prototypes begin to emerge prominently.

Trend analysis on a larger sample set. To analyze the trend more comprehensively, we randomly
select 100 samples from the test set and enhance all 100 prototypes for each sample. We then
compute the average difference between the enhanced activation scores and their original values,
visualizing the results as an averaged curve, just as shown in Fig. 4b.

A.3 HYPER-PARAMETERS FOR TRAINING

More hyper-parameter for Patronus training could be found in Table 3. We trained all experiments
with Adam optimizer, learning rate of 1e−4.

For the latent diffusion model, we trained with an 1D UNet, with base channels of 64, and channel
multipliers as (1,2,4). We set the dropout rate as 0.2 and learning rate as 1e−4.
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Table 3: Hyperparameters used for Patronus training.

Input size Num. p shape of p patch size Num. patches Num. Channels Num. Channel. Mult

FashionMNIST (1,32,32) 30 (1,1,128) 14×14 100 64 1,2,4,4
Cifar10 (3,32,32) 100 (1,1,128) 14×14 100 64 1,2,4,4
FFHQ (3,64,64) 100 (1,1,128) 14×14 672 64 1,2,4,4
CelebA (3,64,64) 100 (1,1,128) 14×14 672 64 1,2,4,4
CheXpert (1,224,224) 100 (1,1,128) 60×60 1849 64 1,2,4,4

Table 4: Ablation study on CelebA, regarding the number of prototypes and the prototype vector
size.

# p shape of p TAD ↑ Attrs ↑ Latent AUROC↑ FID ↓
32

(1,1,128)

0 .8291 ± 0 .0146 9.0000± 0.0000 0.8288± 0.0022 6.0126± 0.0740
64 0.8515± 0.0545 9.2000± 0.4000 0.8527± 0.0017 6.5395± 0.0676

100 0.5395± 0.1205 12 .0000 ± 1 .0954 0 .8646 ± 0 .0010 5.4871± 0.0151
128 0.4700± 0.0758 12.0000± 0.8944 0.8713± 0.0018 5.1264± 0.0488

64
(1,1,64) 0.5860± 0.0535 8.4000± 0.4899 0.8491± 0.0021 5 .2017 ± 0 .0429

(1,1,128) ∗ 0.8515± 0.0545 9.2000± 0.4000 0.8527± 0.0017 6.5395± 0.0676
(1,1,256) 0.4779± 0.0045 8.0000± 0.0000 0.8492± 0.0008 6.2918± 0.1279

* The result is the same as the second row since the hyper-parameters are identical. We listed it as another row
for easier comparison.

For prototype encoder, in this work we apply a 4-layer convolutional network with ReLU activations.
The channel progression is 1 → 32 → 64 → 64 → 128 . All convolutional layers use a 3×3 kernel,
with strides of [2, 1, 1, 1] for the four layers and paddings of [1, 0, 0, 0], respectively.

A.4 CHEXPERT DATASET

In this work, we use a subset of the CheXpert dataset (Irvin et al., 2019), retaining only frontal
chest X-ray scans. To mitigate potential information leakage and reduce memorization effects due
to patient-specific variations, we sample a single scan per patient2. This preprocessing step yields
a total of 28,878 chest X-rays, of which 90% are allocated for training and the remaining 10% for
testing.

B ABLATION STUDY

As shown in Tab. 4, we present an ablation study of Patronus with respect to the number of proto-
types and the dimensionality of the prototype vectors. Experiments are conducted on the CelebA
dataset using an input resolution of (3, 64, 64), a training duration of 200 epochs, and a learning rate
of 1e−4. Note that FID is computed in the context of conditional generation.

B.1 NUMBER OF PROTOTYPES

We evaluate the impact of varying the number of prototypes, setting #p = {32, 64, 100, 128}, while
fixing the prototype vector size to (1, 1, 128). As the number of prototypes increases, we observe
consistent improvements in latent quality (measured by AUROC), the number of attributes captured,
and the FID score. However, the TAD score—which reflects the disentanglement quality—tends
to decline. This trade-off is expected: while a larger prototype pool allows the model to capture
more fine-grained visual patterns, it also introduces redundancy, reducing the distinctiveness and
interpretability of individual prototypes. This suggests the existence of an optimal prototype budget
for balancing generation quality and disentanglement.

2The number of recordings per patient in CheXpert is highly imbalanced, ranging from 1 to 89 (Weng et al.,
2023). Notably, disease severity is correlated with scan frequency—fewer than 25% of control subjects have
more than five scans, while this proportion exceeds 50% among patients.
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Input Recon.
(fixing 𝑠 and 𝑥!) Fixing 𝑠, varying 𝑥!

(a) CelebA

Input Recon.
(fixing 𝑠 and 𝑥!) Fixing 𝑠, varying 𝑥!

(b) FMNIST

Input Recon.
(fixing 𝑠 and 𝑥!) Fixing 𝑠, varying 𝑥!

(c) CIFAR-10

Input Recon.
(fixing 𝑠 and 𝑥!) Fixing 𝑠, varying 𝑥!

(d) FFHQ

Figure 7: Additional examples of reconstruction and variations with fixed s and random xT .

↑ (75-year-old, Female, w/o disease) (27-year-old, Male, w/ disease) ↑ 

↑ (43-year-old, Female, w/o disease) (21-year-old, Male, w/ disease) ↑ 

↑ (89-year-old, Male, w/ disease) (36-year-old, Female, w/o disease) ↑ 

↑ (56-year-old, Female, w/ disease) (53-year-old, Male, w/o disease) ↑ 

Figure 8: Additional Image Interpolation Examples on CheXpert. Interpolations are shown
between two real chest X-rays, with patient age, gender, and disease condition (Cardiomegaly).
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B.2 PROTOTYPE VECTOR SIZE

A larger prototype vector size allows each prototype to encode more detailed semantic information
within a fixed spatial region. Conversely, when the prototype vector size is too small, the model
may struggle to capture sufficient semantic richness. However, excessively large prototype vectors
may introduce optimization challenges, such as slower convergence and increased redundancy. This
trade-off is reflected in the results shown in Tab. 4, where a prototype vector size of (1, 1, 128) yields
the best overall performance.

C ADDITIONAL EXPERIMENTAL RESULTS

C.1 ADDITIONAL VISUAL EXAMPLES

Reconstruction and Variation with Random xT We provide additional visual examples across
multiple datasets in Fig. 7. These results demonstrate Patronus’ ability to capture semantic features
across different datasets.

Notably, while Patronus effectively preserves fine details and patterns, it struggles with rare patterns.
For instance, in the third row of Fig.7b, the model fails to reconstruct the Adidas logo accurately.
Another interesting case appears in the last row of Fig.7d, where Patronus successfully identifies the
presence of a hat but generates variations of different hat styles instead of an exact reproduction.

Interpolation We provide additional visual examples of interpolation across various datasets, in-
cluding CheXpert (Fig.8), as well as FMNIST, CIFAR-10, CelebA, and FFHQ (Fig.9a). In datasets
with well-defined class clusters, such as Fashion-MNIST and CIFAR-10, interpolation tends to be
less effective when transitioning between images belonging to different classes (Fig. 9b).

More Visual Samples for Diagnosis Ability of Patronus In Fig.10, we present additional
samples and hair-color-related prototypes for the diagnosis task, revealing a more pronounced
bias—enhancing hair color also affects the presence of a smile. More specifically, we showcase
eight cases, including four female and four male subjects. Within each gender group, we include
two individuals with black hair and no smile, alongside one individual with brown or blonde hair
and a smile. When enhancing black hair-related prototypes, all images transition to a non-smiling
expression (as seen in the fourth and sixth columns of Fig.10).

C.2 VISUAL REPRESENTATION OF PROTOTYPES

We present a complete visual representation of the learned prototypes from the CelebA dataset in
Fig. 11 and 12. Below each prototype, we provide a summary of its semantic meaning based on
human observation without explicit annotation. Consequently, these interpretations may contain
inaccuracies. For prototypes where a clear semantic meaning could not be determined, we leave the
description blank. Notably, these blank descriptions highlight the inherent limitations of language
in capturing visual concepts. The visualization process follows the steps outlined in Sec. 3.3.

C.3 CAPTURED ATTRIBUTES BY A SINGLE PROTOTYPE

As shown in Tab. 1, we applied TAD and the number of attributes captured to estimate the proto-
type disentanglement ability, where Patronus remarkably outperformed the SOTA by nine captured
attributes, while prior methods capture at most three. Tab. 5 details which prototypes capture these
attributes, with visualizations in Fig. 13.

As shown in Tab. 5, a single prototype can capture multiple attributes. E.g. prototype 82 cap-
tures both “Eyeglasses” and “Rosy Cheeks”. This finding is particularly interesting, as prior visual
inspection suggested that prototype 82 represents the concept of “Heavy Eye Make-up” (Fig. 3),
which is semantically related to both attributes: heavy eye make-up often co-occurs with rosy cheeks
and tends to be negatively correlated with eyeglasses, possibly because individuals wearing heavy
makeup are more likely to use contact lenses instead. This observation is further supported by the
intervention results shown in Fig. 13, where suppressing the activation of p82 leads to the appearance
of eyeglasses, while enhancing the activation induces both rosy cheeks and prominent eye make-up.
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(a) Within-dataset, same-class.

(b) Across classes.

Figure 9: Additional interpolation examples. (a) Interpolation across datasets: Fashion-MNIST
(first two rows), CIFAR-10 (third and fourth), CelebA (fifth and sixth), FFHQ (seventh and eighth)
(b) Cross-class interpolation (Fashion-MNIST, CIFAR-10) showing incoherent transitions.

Table 5: Captured Attributes in CelebA.

Captured Captured Attributes Captured
Attributes AUROC Prototype Index

Bald 0.8276± 0.0041 30
Bangs 0.8411± 0.0022 9

Black Hair 0.8104± 0.0034 78
Blond Hair 0.8917± 0.0022 93

Blurry 0.8717± 0.0058 35
Eyeglasses 0.7967± 0.0026 82
Pale Skin 0.8549± 0.0044 58

Rosy Cheeks 0.8226± 0.0040 82
Wearing Hat 0.9002± 0.0025 9

C.4 LATENT QUALITY FOR CHEXPERT DATASET

We analyze the latent quality for CheXpert dataset by measuring TAD, number of attributes being
captured and latent AUROC in Tab. 6. A total of 23 attributes are evaluated, comprising four demo-
graphic attributes, four indicators related to patients’ socioeconomic or health status, one shortcut
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Input 𝑝!"(-0.01/0.84) 𝑝#$(0.07/0.79)

Black hair related 𝑝

𝑝"# (0.18/0.71) 𝑝%&(0.19/0.70)

Brown hair related 𝑝

𝑝'! (0.14/0.85) 𝑝()(0.19/0.84)

Blonde hair related 𝑝

Figure 10: More visual samples and more hair-color related prototypes for diagnosing un-
wanted correlations with Patronus. By selecting the top two hair color prototypes (highest AU-
ROC for single-dimension prediction), their correlation with “smile” prototype reveals dataset bias.
pj(a/b) define as: (a) Spearman correlation with the “smile” prototype (green: positive, red: nega-
tive), and (b) AUROC for predicting hair color when using this prototype (bold if ≥ 0.75).

feature pacemaker (annotated by Weng et al. (2024)), and 14 disease-related labels. All attributes
are binarized as detailed below3: Age (≥60 or <60), Sex (Male or Female), Race (White or Non-
white), Ethnicity (Hispanic/Latino or Other), Insurance (Enrolled in Medicare or Not), Interpreter
Need (Yes or No), Deceased (Yes or No), and BMI (within the normal range: 18.5–25.0, or outside).

Evaluating latent quality. As shown in Tab. 6, the learned latent representations demonstrate
strong predictive capabilities for most demographic attributes, such as age, sex and BMI, achieving
high AUROC scores using a simple logistic regression model. Notably, the latent space also en-
codes information relevant to the presence of a pacemaker. Furthermore, it supports the prediction
of several cardiopulmonary conditions—such as Cardiomegaly, Edema, and Pleural Effusion—with
AUROC values exceeding 0.75 (bold font in the table). These results indicate that the latent repre-
sentations capture semantically meaningful and clinically relevant information. For comparison, we
include the performance of a ResNet-50 baseline in the Tab. 6. It is worth noting that this baseline
was trained on 320×320 resolution images (Bressem et al., 2020), and that the original CheXpert
validation set includes only samples from five disease categories. As a result, performance metrics
for the remaining categories are unavailable.

Interpreting Captured Attributes and Their Corresponding Prototypes. Among the 23 at-
tributes, three are captured by a single prototype, as listed in Tab. 6, with visualizations provided in
Fig. 14. Notably, the Sex attribute is captured by a prototype that focuses on the edge of the chest
wall (Fig. 14a). In the extrapolation experiment on prototype p1 (Fig. 14b), we observe a decrease in
rib cage size as the prototype similarity score increases. This observation aligns with clinical find-

3We acknowledge that the binarization is not ideal, as it may be white-centralized and introduce bias; how-
ever, it is adopted here for the sake of simplification.
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Figure 11: Visualization of learned prototypes on CelebA (prototypes 0 - 49). Each row shows
10 prototypes with three views per prototype (top to bottom): original image, image enhanced with
prototype j, and most activated patch (serves as the prototype visualization). BG means background.

ings that females tend to have a disproportionately smaller rib cage compared to males (Bellemare
et al., 2003; 2001). For the Age attribute, the corresponding prototype is most activated in the region
around the upper thoracic vertebrae (Fig. 14a). This may relate to the age-associated ossification
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Figure 12: Visualization of learned prototypes on CelebA (prototypes 50 - 99). Each row shows
10 prototypes with three views per prototype (top to bottom): original image, image enhanced with
prototype j, and most activated patch (serves as the prototype visualization). BG means background.

of the costochondral cartilage of the first rib (McCormick & Stewart, 1988; Radiology Masterclass,
n.d.). Regarding the Pacemaker attribute, the most activated patch is located near the upper region
of the heart, potentially reflecting the correlation between pacemaker presence and underlying car-
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Figure 13: Visualization of Captured Attributes in CelebA via Explorations. The text on the left
indicates the attributes captured in the CelebA dataset. Note that a single prototype can potentially
capture multiple attributes.
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Figure 14: Visualization and extrapolation of prototypes capturing attributes from CheXpert.
Three attributes are captured: Age (by p38), Sex (by p1), and presence of a pacemaker (by p34).

diac conditions. In Fig. 14b, increasing the activation of prototype p34 leads to a more pronounced
appearance of a pacemaker.

We acknowledge the limitations of our medical expertise and do not intend to draw definitive clinical
conclusions from these observations. We welcome researchers with medical backgrounds to further
evaluate and interpret these findings.
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Table 6: Latent Quality of the CheXpert Dataset. The latent AUROC denotes the average AUROC
across all considered attributes. A total of 23 attributes are evaluated, comprising four demographic
attributes, four indicators related to patients’ socioeconomic or health status, one shortcut feature
(pacemaker), and 14 disease-related labels. All attributes are binarized. Bolded values indicate
AUROC ≥ 0.75.

TAD↑ Attrs ↑ Latent Demographic Attributes∗ Other Attributes∗ Shortcut
AUROC↑ Age Sex Race Ethnicity Insurance Interpreter Deceased BMI PM †

0.12±0.01 3.0±0.0 0.74±0.01 0.88±0.01 0.98±0.00 0.70±0.01 0.72±0.01 0.74±0.00 0.74±0.00 0.66±0.01 0.77±0.01 0.92±0.01

Disease Labels
No Enlarged Cardio- Lung Lung Edema Consoli- Pneu- Atelec- Pneumo- Pleural Pleural Fracture Support

Finding CM‡ megaly Opacity Lesion dation monia tasis thorax Effusion Other Devices

LR using p 0.86 0.61 0.75 0.70 0.65 0.77 0.64 0.61 0.60 0.68 0.80 0.70 0.68 0.76
ResNet50 - - 0.80 - - 0.88 0.90 - 0.80 - 0.91 - - -

Captured Captured Attributes Captured
Attributes AUROC Prototype Index

Age Group 0.7891± 0.0031 38
Sex 0.8806± 0.0005 1
PM† 0.7823± 0.0028 34

* AUROC Performance from Latent Representations. The reported AUROC values reflect the performance
of a logistic regression classifier trained on the latent representations using 5-fold cross-validation. Demo-
graphic and other attributes are binarized, details are in text.

† Pacemaker, annotations from Weng et al. (2024).
‡ Enlarged Cardiomediastinum.

C.5 PROTOTYPE CONSISTENCY

Prototype visualization consistency for one run. We quantitatively evaluated the consistency of
prototype visualizations in one run. As the visual concepts are very small patches, consistency is
measured directly in pixel space, which faithfully captures their low-level structural differences.

Using Euclidean (L2) distance between visualization pairs, we observe a clear separation: within-
prototype = 2.31 vs. between-prototype = 3.95. A two-sample t-test confirms this separation is
highly significant (t = 19.55, p = 1.6× 10−37). This confirms that each prototype forms a coherent
and distinguishable visual concept.

Learned prototype consistency cross different run. This part evaluates the consistency of
learned prototypes across different random initializations. We’d like to emphasis that our goal is
not to enforce identical explanations across models, but to explain each model’s behaviour as it is
trained. If two models use different internal concepts during generation, then different prototypes
are expected and even desirable. Nevertheless, under almost identical training conditions (same
architecture, dataset, and objective), it is still meaningful to assess whether the learned prototypes
remain consistent.

To do so, we compare prototype activation patterns on the same input batches rather than directly
comparing prototype vectors, since the latter are not aligned across runs due to arbitrary rotations
in the feature space. For each batch of B images (here B = 512), we obtain prototype activations
from both models:

A1, A2 ∈ RN×B ,

where each row corresponds to the activation pattern of one prototype across the batch.

We then compute the pairwise cosine similarity matrix:

Si,j =
⟨A1

i , A
2
j ⟩

∥A1
i ∥ · ∥A2

j∥
.

To resolve the permutation ambiguity between prototype indices, we determine the optimal one-to-
one alignment using the Hungarian algorithm :

π = arg max
1-1 mapping

∑
i

Si,π(i).
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(a) Distribution of Pearson correlation values for
prototype similarity scores, computed from 1,024
randomly selected training samples. Results compare
the original training and training with an additional
loss term. The difference is minimal, with only a
small fraction of pairs exceeding an absolute corre-
lation of 0.5 (red dashed lines) for all cases.
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(b) Prototype visualizations and their semantic inter-
pretations remain consistent regardless of the addi-
tional loss.

Figure 15: Effect of additional loss on prototype diversity. (Top) Pearson correlation distribution
of prototype similarity scores shows minimal differences regardless of additional loss. (Bottom)
Prototype visualizations remain consistent, indicating negligible impact on semantic representations.

We then assess how consistently this alignment appears across all test batches. The resulting permu-
tation consistency score is 0.882, indicating that the prototype-to-prototype mapping across seeds is
largely stable, with most prototypes consistently aligned between runs. After applying the optimal
alignment, the matched prototypes achieve extremely high similarity (mean ≈ 0.99), indicating that
the semantic behaviour of prototypes is almost identical across seeds.

D EXTENDED DISCUSSION

D.1 PROTOTYPE CORRELATION AND COLLAPSE

As discussed in Sec. 5, we further provide additional experimental results in Fig. 15. These results
confirm that the new models do not show substantial changes in the learned prototypes, suggesting
that prototypes optimized via the denoising objective are already sufficiently decorrelated without
explicit regularization.

D.2 LIMITATIONS OF CROSS-MODAL INTERPRETABILITY

We emphasize interpreting diffusion models without cross-modality by design for two key reasons:

Language’s limitation in representing complexity: While language, as a discursive symbolism,
serves as a powerful medium for interpretation, it alone cannot fully represent non-symbolic sensory
and semantics complexity (Langer, 2009). This is evident in the superior performance of multi-
modal learning over single-modality; prior work (Gal et al., 2022; Goyal et al., 2017) further shows
the restricted perceptual capacity of language-only generation by introducing visual cues.

Inherited bias from the text embedding: (1) Incomplete text representations: if certain concepts
are not explicitly named (e.g., medical devices in radiology reports), the model cannot learn their
visual counterparts. (2) Spurious correlations: text data may encode unintended biases, such as
differing report detail levels by patient demographics, which may propagate into generated images.

D.3 DO WE CAPTURE ALL RELEVANT ATTRIBUTES?

We further illustrate the challenge of capturing global features with sample results in Fig. 16. Fol-
lowing the experiment described in Sec. 4.1, we reconstruct images and their variations using a fixed
s with either fixed or random xT . While fine-grained details, such as cheekbone structure in the sec-
ond row and shirt details in the first row, are well preserved, the generated images with varying xT

fail to capture age or gender consistently on harder scenarios. For instance, the middle image in
the first row appears noticeably younger than the original, while most variations in the second row
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Figure 16: Patronus may struggle to capture global features such as age and gender. To illustrate
this, we present three samples generated using the fixed s with random xT . While the generated
images successfully preserve semantic attributes such as hair color, cheekbones, smile, shirt, and
background color, they fail to accurately reconstruct age or gender.

depict a more mature appearance. Additionally, in the third sample, a gender shift from female to
male is observed, possibly influenced by the presence of short hair.

D.4 JUSTIFICATION FOR EXCLUDING PROTOPNET’S ADDITIONAL LOSS TERMS

In this work, we optimize the model using only the denoiser loss. A key question arises: Is this
loss sufficient? Besides the attempt in Sec. 5 (Fig. 15) to add an extra disentanglement loss, we
further compare with ProtoPNet, which, alongside cross-entropy loss for classification, introduces
two additional loss terms: (1) Cluster loss (Clst): encourages each training sample to have at
least one patch close to a prototype; (2) Separation loss (Sep): pushes latent patches away from
prototypes of other classes.

Neither loss applies in our setting: (i) prototype representation is supposed to capture the underlying
data distribution, not to enforce proximity to specific training samples; (ii) our method is generative
and does not rely on class labels, making class-dependent separation constraints irrelevant. Thus,
the denoiser loss is sufficient, as ProtoPNet’s additional terms do not align with the objectives.

E THE USE OF LLMS IN THIS WORK

In this work, we used large language models (LLMs) solely to assist with the presentation of the
paper, including grammar correction, wording refinement, and minor sentence shortening (at the
level of one or two words, not entire paragraphs). LLMs were not used for any other purpose. We
always check the content after using LLMs, and we are responsible for the content that we submit.

F QUANTITATIVE EVALUATION OVER INTERPRETABILITY

F.1 EVALUATING PROTOTYPE–LANGUAGE ALIGNMENT VIA IMAGE CAPTIONING

An additional experiment was conducted to examine whether language-based analysis can support
the alignment between visual concepts and human understanding. Specifically, we aim to assess
whether our prototypes encode visual features that are both visible and interpretable through human
concepts. To this end, we used the BLIP model (Salesforce/blip-image-captioning-large on Hug-
gingFace) to caption the prototype-enhanced image for prototype j and the corresponding original
image, and then compared the words with the most significant increases. For example, for the proto-
type corresponding to ‘curly hair’ in the visualization (Fig. 3a), the top three words with the highest
increases after applying the prototype are ‘curly’: 409, ‘hair’: 307, ‘long’: 66, where each value
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Figure 17: Visualization of learned prototypes on CelebA with the top three increased words
using BLIP for captioning (p0-p39). Each row shows 10 prototypes with three views per prototype
(top to bottom): original image, image enhanced with prototype j, and most activated patch (serves
as the prototype visualization), and the top three increased words.

reflects the difference in word frequency between the enhanced and original images across 672 sam-
ples. We provide the full list of the top three increased words, along with prototype visualizations
from one run, in Fig. 17-18. Note that this evaluation depends strongly on the captioning model’s
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Figure 18: Visualization of learned prototypes on CelebA with the top three increased words
using BLIP for captioning (p40-p79). Each row shows 10 prototypes with three views per proto-
type (top to bottom): original image, image enhanced with prototype j, and most activated patch
(serves as the prototype visualization), and the top three increased words.

vocabulary. For instance, prototype 34 in this run corresponds to a heavy eye-makeup enhancement,
but the model fails to describe it and instead produces only gender-related terms.
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Figure 19: Visualization of learned prototypes on CelebA with the top three increased words
using BLIP for captioning (p80-p99). Each row shows 10 prototypes with three views per proto-
type (top to bottom): original image, image enhanced with prototype j, and most activated patch
(serves as the prototype visualization), and the top three increased words.

Figure 20: Faithfulness evaluation of prototype scores. Enhancing prototype pi leads to a clear
increase in its own score (i = j), while scores of other prototypes remain near zero (i ̸= j), indicat-
ing that the similarity measure behaves as intended.

F.2 FAITHFULNESS MEASUREMENT

To evaluate the faithfulness of the prototype scores, we measure whether the score of prototype pi
increases when the corresponding condition is enhanced. For each prototype pi, we generate an
enhanced image using pi (x-axis) and compute the change in all prototype scores (y-axis). The
results are shown in Fig. 20. The target prototype shows a clear increase (mean around 0.35),
whereas the remaining prototypes remain near zero, indicating that the similarity score functions
as expected. The two observed outliers correspond to prototypes that encode minimal semantic
information based on their visualizations.
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Figure 21: Training Overview. The black arrows show the forward computation: the encoder
extracts prototypes and obtains similarity scores, which condition the DDPM during generation.
The blue arrows indicate the backward path of the denoising loss, which updates both the prototype
module and the conditional DDPM jointly.

G TRAINING STRATEGY

The training strategy for Patronus is direct and simple. All components are jointly trained with solo
training objectives, i.e. the denoiser loss. Fig. 21 shows the training overview with both forward
computation and backward loss propagation in black and blue arrow respectively.

H ROBUSTNESS OF PROTOTYPE ACTIVATION CONTROL

We evaluate the robustness of prototype activation control by comparing the cosine similarity be-
tween clean images and images generated with noise-perturbed prototype activations. We add ran-
dom noise with magnitudes [0.1, 0.5, 1.0, 2.0, 5.0, 10.0]% of the maximum activation value (fixed to
2.0 in our experiments). mportantly, we perturb all prototype activations, not just a single prototype.
Image similarity is measured using the cosine similarity of InceptionV3 embeddings.

Fig. 22 shows the results, clearly illustrating that the prototype activation score function is highly
robust, that the cosine similarity decreases slightly at low noise levels. When the noise magnitude
increase to 10%, the embedding similarity becomes comparable to that between random clean image
pairs. Visual examples of generated images with noise added to the activation scores are provided
in Fig. 23.

Figure 22: Prototype activation control robustness quantified by comparing the embedding simi-
larity between clean images and images generated with added activation noise.
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Figure 23: Visual examples of generated images after noise is added to the activation scores.
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